Methylthioadenosine promotes remyelination by inducing oligodendrocyte differentiation

نویسندگان

  • Beatriz Moreno
  • Gemma Vila
  • Begoña Fernandez-Diez
  • Raquel Vázquez
  • Alessandra di Penta
  • Oihana Errea
  • Nagore Escala
  • Andrés Miguez
  • Jordi Alberch
  • Pablo Villoslada
چکیده

Background: Methylthioadenosine is a metabolite of the polyamine pathway that modulates methyltransferase activity, thereby influencing DNA and protein methylation. Since methylthioadenosine produces neuroprotection in models of inflammation, ischemia and epilepsy, we set out to evaluate the role of methylthioadenosine in promoting remyelination, a process that will protect axons in demyelinating diseases and that will aid functional recovery. Methods: The effect of methylthioadenosine in promoting remyelination was tested in mouse cerebellum organotypic cultures that were exposed to lipopolysaccharide to induce neuroinflammation, or lysolecithin to induce chemical demyelination. In addition methylthioadenosine administration was also tested in vivo, using the cuprizone model of demyelination. The molecular pathways involved in this methylthioadenosine activity were evaluated in primary cortical mouse astrocytes. Results: In models of neuroinflammation or chemical demyelination, methylthioadenosine prevented the loss of myelin and promoted remyelination in vitro by increasing the number of mature myelinating oligodendrocytes. Methylthioadenosine enhanced myelin production in the cuprizone model, in conjunction with a clinical improvement. Methylthioadenosine enhanced STAT-3 phosphorylation in astrocytes in vitro, and the production of ciliary neurotrophic factor (CNTF), a trophic factor known to promote oligodendrocyte maturation and differentiation, as well as remyelination. Conclusions: The remyelination promoted by methylthioadenosine suggests a role for the polyamine pathway in oligodendrocyte maturation and survival, paving the way for new therapeutic strategies to promote regeneration in Multiple Sclerosis and other demyelinating diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription factor 7 like 2 promotes oligodendrocyte differentiation and remyelination

Transcription factor 7 like 2 (TCF7L2, also termed TCF4), is a Wnt effector induced transiently in the oligodendroglial lineage. The current well accepted hypothesis is that TCF7L2 inhibits oligodendrocyte differentiation and remyelination through canonical Wnt/β‑catenin signaling. However, recent studies indicated that TCF7L2 activity is required during oligodendrocyte differentiation and remy...

متن کامل

Catalpol induces oligodendrocyte precursor cell-mediated remyelination in vitro.

In demyelinating diseases such as multiple sclerosis, one of the treatment strategies includes remyelination using oligodendrocyte precursor cells (OPC). Catalpol, the extract of radix rehmanniae, is neuroprotective. Using an OPC culture model, we showed that 10 μM catalpol promotes OPC proliferation, cell migration and differentiation into mature oligodendrocytes. The 10 μM catalpol displayed ...

متن کامل

Kappa opioid receptor activation alleviates experimental autoimmune encephalomyelitis and promotes oligodendrocyte-mediated remyelination

Multiple sclerosis (MS) is characterized by autoimmune damage to the central nervous system. All the current drugs for MS target the immune system. Although effective in reducing new lesions, they have limited effects in preventing the progression of disability. Promoting oligodendrocyte-mediated remyelination and recovery of neurons are the new directions of MS therapy. The endogenous opioid s...

متن کامل

Oscillating field stimulation promotes spinal cord remyelination by inducing differentiation of oligodendrocyte precursor cells after spinal cord injury.

Demyelination is part of the cascading secondary injury after the primary insult and contributes to the loss of function after spinal cord injury (SCI). Oligodendrocyte precursor cells (OPCs) are the main remyelinating cells in the central nervous system (CNS). We explored whether oscillating field stimulation (OFS) could efficiently promote OPC differentiation and improve remyelination after S...

متن کامل

Transplanted miR-219-overexpressing oligodendrocyte precursor cells promoted remyelination and improved functional recovery in a chronic demyelinated model

Oligodendrocyte precursor cells (OPCs) have the ability to repair demyelinated lesions by maturing into myelin-producing oligodendrocytes. Recent evidence suggests that miR-219 helps regulate the differentiation of OPCs into oligodendrocytes. We performed oligodendrocyte differentiation studies using miR-219-overexpressing mouse embryonic stem cells (miR219-mESCs). The self-renewal and multiple...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017